Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Octane-1,8-diammonium dichloride monohydrate

Charmaine van Blerk* and Gert J. Kruger

University of Johannesburg, Department of Chemistry, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
Correspondence e-mail: cvanblerk@uj.ac.za

Received 14 September 2007; accepted 19 September 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.097 ;$ data-to-parameter ratio $=25.3$.

The crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Cl}^{-}$.$\mathrm{H}_{2} \mathrm{O}$, exhibits layered stacking in which the organic cations are separated by inorganic layers containing the chloride anions and the water molecules. The diammonium octane chain straddles a centre of inversion and the single water of crystallization sits on a twofold rotation axis. The diammonium octane chains pack in parallel layers with every second hydrocarbon layer alternating in a staggered configuration with respect to the previous layer. The three-dimensional hydrogen-bonding network links the organic and inorganic layers together in a highly intricate and complex manner. The torsion angles of the hydrocarbon chain deviate from 180° as a result of hydrogen-bonding interactions to the water molecule and the surrounding chloride anions.

Related literature

For related structural studies of octane-1,8-diammonium salts see: Brisson \& Brisse (1984); Baur \& Tillmanns (1986). For related literature see: Allen (2002).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=235.19$
Monoclinic, $C 2 / c$
$a=24.719$ (3) A
$b=5.0827$ (6) A
$c=10.8593(14) \AA$
$\beta=103.590$ (3) ${ }^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
$V=1326.2(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.40 \times 0.22 \times 0.12 \mathrm{~mm}$

Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.837, T_{\text {max }}=0.947$

3965 measured reflections 1647 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \quad 65$ parameters
$w R\left(F^{2}\right)=0.097$
$S=1.04$
1647 reflections

1209 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.18 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-164.65(14)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4$	$-173.09(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.66(14)$		
Symmetry code: (i) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$			

Symmetry code: (i) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 1^{\text {ii }}$	0.89	2.29	3.1777 (15)	175
$\mathrm{N} 1-\mathrm{H} 1 D \cdots \mathrm{Cl} 1^{\text {iii }}$	0.89	2.40	3.2215 (14)	153
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{E} \cdots \mathrm{O} 1$	0.89	2.19	2.9660 (17)	145
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\text {iv }}$	0.87 (2)	2.34 (2)	3.2036 (13)	173 (2)

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2003) and publCIF (Westrip, 2007).

The authors acknowledge the University of Johannesburg for funding for this study and the University of the Witwatersrand for their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2101).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Baur, W. H. \& Tillmanns, E. (1986). Acta Cryst. B42, 95-111.
Brisson, J. \& Brisse, F. (1984). Acta Cryst. C40, 1405-1407.
Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2004). SADABS. Version 2004/1. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, o4289 [doi:10.1107/S1600536807045990]

Octane-1,8-diammonium dichloride monohydrate

C. van Blerk and G. J. Kruger

Comment

In an ongoing study of the structural characteristics of layered diammonium salts, we are determining the crystal structures of long-chained diammonium salts. Colourless crystals of octane-1,8-diammonium dichloride hydrate formed when we attempted to synthesize the unhydrated chloride salt. A search of the Cambridge Structural Database (Version 5.28, May 2007 release; Allen, 2002) revealed that only the octane-1,8-diammonium dibromide salt has previously been studied (Brisson \& Brisse, 1984; Baur \& Tillmanns, 1986) and the crystal structure of the title compound (I) had not previously been determined.

The diammonium octane chain straddles a centre of inversion and the single water of crystallization sits on a twofold rotation axis. Therefore the asymmetric unit contains one chloride anion, one half of the diammonium cation and one half of the water molecule (Figure 1).

Figure 2 illustrates the layered packing arrangement of the title compound (I). Single layers of the extended cations pack end on between two layers of chloride ions. Sandwiched in-between the chloride ions is a single layer of water molecules that hydrogen bonds to the chloride anions and the diammonium cations. The hydrocarbon chains pack in parallel layers with every second hydrocarbon chain layer alternating in a staggered, alternating configuration with respect to the previous layer. Since the packing configuration is a complex, staggered, alternating pattern, the hydrogen bonding network that is formed is an intricately complex bridge between the layers through the water molecules and chloride anions.

Figure 3 shows the hydrogen bonding contacts for the title compound (I). The hydrogen atoms around the ammonium group are involved in hydrogen bonds with two chloride anions and the oxygen of the water molecule. The hydrogen atoms of the water molecule hydrogen bond to a further two chloride anions resulting in four tetrahedrally oriented hydrogen bonds around the water molecule. The hydrogen bond distances and angles for (I) can be found in Table 1. Figure 3 also shows that the hydrocarbon chain is slightly twisted out of its fully extended configuration by up to 15° (where the torsion angles for a standard configuration hydrocarbon chain should be 180°). When examining the torsion angles (Table 2) along the hydrocarbon chain of (I) it is evident that the hydrogen bonding interactions to H 1 attached to the water and the chloride anion affect the chain configuration.

Experimental

Compound (I) was prepared by adding 1,8-diamino-octane ($0.50 \mathrm{~g}, 3.47 \mathrm{mmol}$) to 32% hydrochloric acid ($2 \mathrm{ml}, 69.1 \mathrm{mmol}$) in a sample vial. The mixture was then refluxed at 363 K for 2 h . The solution was cooled at $2 \mathrm{~K} \mathrm{~h}^{-1}$ to room temperature. Colourless crystals of octane-1,8-diammonium dichloride hydrate were collected and a suitable single-crystal was taken for the X-ray diffraction study.

supplementary materials

Refinement

H atoms were geometrically positioned and refined in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.97 \AA, \mathrm{~N}-\mathrm{H}=0.89$ \AA, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{N})$. For (I), the highest peak in the final difference map is $0.87 \AA$ from $\mathrm{Cl1}$ and the deepest hole is $1.03 \AA$ from H 1 .

Figures

Octane-1,8-diammonium dichloride monohydrate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$	$F_{000}=512$
$M_{r}=235.19$	$D_{\mathrm{x}}=1.178 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $C 2 / c$	Mo Ka radiation
Hall symbol: -C 2 yc	$\lambda=0.71073 \AA$
$a=24.719(3) \AA$	Cell parameters from 1647 reflections
$b=5.0827(6) \AA$	$\theta=1.7-28.3^{\circ}$
$c=10.8593(14) \AA$	$\mu=0.46 \mathrm{~mm}^{-1}$
$\beta=103.590(3)^{\circ}$	$T=293(2) \mathrm{K}$

$$
\begin{aligned}
& V=1326.2(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector

diffractometer

Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.837, T_{\text {max }}=0.947$
3965 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.097$
$S=1.04$
1647 reflections
65 parameters
Primary atom site location: structure-invariant direct methods
$0.40 \times 0.22 \times 0.12 \mathrm{~mm}$

1647 independent reflections

1209 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=28.3^{\circ}$
$\theta_{\text {min }}=1.7^{\circ}$
$h=-32 \rightarrow 29$
$k=-6 \rightarrow 5$
$l=-14 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0507 P)^{2}+0.1994 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.18$ e \AA^{-3}
$\Delta \rho_{\min }=-0.12$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.62661(7)$	$0.6672(3)$	$0.20031(15)$	$0.0486(4)$
H1A	0.6280	0.8093	0.2606	0.058^{*}
H1B	0.6498	0.7160	0.1433	0.058^{*}

C2	$0.64942(7)$	$0.4197(3)$	$0.27064(15)$	$0.0493(4)$
H2A	0.6574	0.2924	0.2108	0.059^{*}
H2B	0.6214	0.3445	0.3094	0.059^{*}
C3	$0.70194(6)$	$0.4707(3)$	$0.37245(14)$	$0.0497(4)$
H3A	0.6938	0.5977	0.4322	0.060^{*}
H3B	0.7298	0.5474	0.3335	0.060^{*}
C4	$0.72584(6)$	$0.2236(3)$	$0.44406(14)$	$0.0461(4)$
H4A	0.6966	0.1353	0.4740	0.055^{*}
H4B	0.7382	0.1054	0.3860	0.055^{*}
N1	$0.56868(5)$	$0.6322(3)$	$0.12689(13)$	$0.0519(3)$
H1C	0.5672	0.5002	0.0724	0.078^{*}
H1D	0.5570	0.7795	0.0846	0.078^{*}
H1E	0.5470	0.5960	0.1794	0.078^{*}
C11	$0.566023(17)$	$0.86236(8)$	$0.44656(4)$	$0.05515(17)$
O1	0.5000	$0.2880(4)$	0.2500	$0.0574(4)$
H1	$0.4814(10)$	$0.184(5)$	$0.192(2)$	$0.098(8)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0510(8)$	$0.0405(8)$	$0.0498(8)$	$-0.0002(7)$	$0.0030(6)$	$0.0041(7)$
C2	$0.0507(9)$	$0.0385(8)$	$0.0519(9)$	$0.0024(6)$	$-0.0013(7)$	$0.0033(7)$
C3	$0.0501(8)$	$0.0419(8)$	$0.0517(8)$	$0.0004(7)$	$0.0010(7)$	$0.0043(7)$
C4	$0.0471(8)$	$0.0414(8)$	$0.0458(8)$	$0.0024(7)$	$0.0032(6)$	$0.0019(7)$
N1	$0.0520(7)$	$0.0473(8)$	$0.0524(8)$	$0.0094(6)$	$0.0042(6)$	$0.0102(6)$
C1	$0.0640(3)$	$0.0467(3)$	$0.0507(2)$	$0.00232(18)$	$0.00525(17)$	$-0.00322(17)$
O1	$0.0654(11)$	$0.0490(10)$	$0.0520(10)$	0.000	$0.0021(8)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.477(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.510(2)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.517(2)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{C} 3-\mathrm{C} 4$	$1.522(2)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$111.86(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.2
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.2
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$112.36(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.1

$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{C} 4$	
i	$1.514(3)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{C}$	0.8900
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{D}$	0.8900
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{E}$	0.8900
$\mathrm{O} 1-\mathrm{H} 1$	$0.87(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.9
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	107.7
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{C} 4-\mathrm{C} 3$	$113.70(16)$
$\mathrm{C} 4-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.8
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.8
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	107.7

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.1	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.1	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{D}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.9	$\mathrm{H} 1 \mathrm{C}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{D}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$113.25(13)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{E}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.9	$\mathrm{H} 1 \mathrm{C}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{E}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 A$	108.9	$\mathrm{H} 1 \mathrm{D}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{E}$	109.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-164.65(14)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4{ }^{\mathrm{i}}$	$-173.09(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.66(14)$		

Symmetry codes: (i) $-x+3 / 2,-y+1 / 2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{C} \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.89	2.29	$3.1777(15)$	175
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{D} \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	0.89	2.40	$3.2215(14)$	153
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{E} \cdots \mathrm{O} 1$	0.89	2.19	$2.9660(17)$	145
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Cl} 1^{\text {iv }}$	$0.87(2)$	$2.34(2)$	$3.2036(13)$	$173(2)$

Symmetry codes: (ii) $x,-y+1, z-1 / 2$; (iii) $x,-y+2, z-1 / 2$; (iv) $-x+1, y-1,-z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

